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(5”0)2 = My(1+7)~N + N2
~ N + N% ~ N2

e N2, .(1027)
n® ~2N?, |

Instead of considering the sin, . w0
of g neighbouring states, all ha gle-particle state 1, we can consider a group

: ving the same mean occupation number 7 .

i (10.23) over such a group of g neighbouring states containing
N =g .part\cles.. The statistical independence of the probability distribution
of the different single-particle states allows us to write

(BN)* = g(dn)" = gn(1¥n) = ﬁ(méﬁ] ..(10.29)

The relation (10.23) is applicable to photo
b e since = (F])F;or i n[; ns as well, even though (10.22)
We can use (10.29) for photons that obey BE statics, n(e) = (&/® = 1)
The number of quantum states of the photons with frequencies between Vv
and v + Av is given by (4.118), g = 8rV(v?/c)Av. The total energy of the
quanta in the frequency range is E, = Nhv.
If we multiply (10.29) by (hv)?,

s E + S (1030)
(BE(ay)” = "VHO) Tgryvidy | S

This result was derived by Einstein. The first term on the right involving h
is typical of the corpuscular nature of radiation. The second term, not
involving h, represents the classical result for the energy fluctuations of black-

body radiation. The result (10.30) implies that photons like to travel in

bunches. Large P
observed.!

hoton density fluctuations have been experimentally
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10.5 ;{”’W e \L. RANDOW VI IRy
' O irecti kes a random walk in
A drunk sailor, who has lost the sense of direction, ta :
one dinmnsi:r:. Suppose he takes N steps of equal length I, each step being
coak :
random (say) to the east or to the west. Each step has a probability 5 of being
i probability that heisat a distance x from

27 (1956); EM. Purcell Nature 175 MR

'RH, Brown and RQ. Twiss, Nafu’e 1%




'.i.»,,

Pt Sy that reach m after N steps) x (1}
(m, N) (numbet of disﬁnct seqm 2)

i‘rlr """ f.-.'t»’

be positive, md the remaining ’”z' : E(N m) steps must be negative,

Clhereﬁorethenumbanofdisﬁnctsequencesthatreachmxs '

SR e, oL 7 Akl -(1031)
r(N-t-m)] 3N - m |t :

and  P(m, N) = (-—) W(m). (1032)

For large N use the Stirling approximation in its more exact form (Appendix
2), N! = (2rN)'/2 NNe-N, or .

In N! = NlnN N+-ln(21l:N) :

= = L S . ..(10.33)
| g (N +2)1nN N+2ln21t (10.33).
Then

In P(m, N) = (N +%)1nN —_-%(N + +1)ln—;—(N +m)

i
’ y

3@ =M+ DI ZN ~m)-Lin2n- N In2. .10

Since m <« N, expand , ,'
‘ A 404
m m_ m* ‘ W
/! :t —r = i_ A e S ! 3 . 0‘% - ?:"
'“(1- N) N 2N7 N7 -0

50 that, using In %(Ni m)— lne-N +In[1(m/N)],

12

itk

N'--—In21c anz
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s, : : 2
2lnN-hht-27-%1n2-m-3-'L_.-;,v -

or P(m, o At ; | Tt
e A ) exp(-m?* /2N). .-(10.37)
Asx=mland m =n_ _
the sailor is betw e e '"‘(N—")—Zn — N, the probability that
eenxandx"'dxaftel'Nsteps‘s
P(x, N)dx = P(m, N)dm = P(m, N)—a ..(10.38)
We write dx = 2] dm,

b ;
B9 Giiount Ami= 2. ecause m can take only integral values separated by
From (10.37, 38)

P(x, N)dx = (2ri*2N)'/? exp(-x?/2NP)dx. ...(10.39)
This is the normal or Gaussian distribution, which is usually written as
P(x) = @m712y! exp(=x*/2¥), ['"P(xdx =1 ..(10.40)

It has a symmetrical peak situated at x = 0. The width of the peak increases
with y(Fig. 3.8).

To introduce time, we assume that the sailor takes N = nt steps in time
t. Then the probability of the sailor being in the interval dx at x after time

tis
P(x)dx = (2nPnt)'/? exp(-x*/2Pnt)dx. ...(10.41)
The mean square distance travelled is given by the mean square ﬂuctuatxon
@x)2 = x* = [ _x*P(x)dx = Pnt = ¥, .(10.42)

where we have used
1/2
Sy = : dx = l _E.. y
J'_“x exp(-ax*) 2(a3
— 1N and 1/1 = v is the velocity.
I time taken for each step, the f =7

We c:u: lw/svnt}:: tlhe conditional probability that the sailor will be within dx at x
attnmetlfhewasatx—Oatt-O as

e ) .
P(0, 0; x, 1) = (4nDp)/? exp(~x2/4Dt)dx, D = SYE .(10.43)

Niote that nt = 1. The spread of the distribution increases with t, and

= oS 2Dk (10.44)

tant.
D is the parhcle diffusion CC;:Seach having a magnetic moment . which may

The problem of N particl S onetic field H was discussed in
calculg:i:: zpaﬂizu;iog)a;ﬂi:; gl:smbuhon of the total ma :




Statistical Mechamc,
—

that in the random walk problem

= 0 is identical with then (10.37) gives for

moment M for H ). If we write M = miply,

[compare (10.32, 37) with (3.94

the entropy

m2 10
s -(10.4
6 = In P(m, N) =~ constant 5N ( 5)

In the presence of the magnetic field H, |
m’kT | constant.

E=-mpH, F=E-ktc ~ -mpu,H+
If F is minimum, 9F /dm = 0 gives

m _ pyH --.(10.46)
N kT *

2

H
M = ,,,pH:NuH , ...(10.47)

Apart from numerical factors and replacement of kT by £.(0), (10.47)
agrees with (7.45).

» SRS e = S A RV SIS T S AT T e t )

'RANDOM WALK? AND BROWNIAN MOTION L
A very small particle immersed in a liquid exhibits a random type of motion.
It is called Brownian motion. It is produced by the thermal fluctuation of

pressure on the particle. Because of the fluctuations, the forces do not always
cancel and the particle is knocked about in a random way.

The Brownian motion in one dimension is like a random walk along a
line. At the end of each period of time t the particle has either moved a
distance | = vt to the right or a distance [ to the left. If the direction of each
successive step is a random variable, then the probability that during +N
periods the particle has made s positive and N — s negative steps, resulting
in net displacement x, = [s —~ (N = s)]I = (2s — N)L is e

- N! s(YN-s
P(N) = SN —3)i _s)!P 5 S ...(10.48)
It is called the binomial distribut; i
3 inomial distribution (Appendix 1) and reduces to (10.32)
1
P=1-Q=1 =
| Q = and m = 25 _ N By definition
> 3
X = x,P (N) = A
» = Zxh ’}.;0( s = N)IP,(N) ..(10.49)

N
-_— = -%) <
(x, - %,)° ’go(x‘ LY PAN) = sZ()[(Zs—N)I_

%LPP(N). ..(1050)

har, Rev. Mod. Phys. 15, 1 (1943).
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